Deep ordinal classification in forest areas using light detection and ranging point clouds
A. Morales-Martín , F. Mesas-Carrascosa, P. Gutiérrez, F. Pérez-Porras, V. Vargas, C. Hervás-Martínez
Sensors, Vol. 24(7), pp. 1-18, 2024 Indexed in JCR. Impact factor: 3.4, Position: 122/353 (Q2) in ENGINEERING, ELECTRICAL & ELECTRONICAbstract
Recent advances in Deep Learning and aerial Light Detection And Ranging (LiDAR) have offered the possibility of refining the classification and segmentation of 3D point clouds to contribute to the monitoring of complex environments. In this context, the present study focuses on developing an ordinal classification model in forest areas where LiDAR point clouds can be classified into four distinct ordinal classes: ground, low vegetation, medium vegetation, and high vegetation. To do so, an effective soft labeling technique based on a novel proposed generalized exponential function (CE-GE) is applied to the PointNet network architecture. Statistical analyses based on Kolmogorov–Smirnov and Student’s t-test reveal that the CE-GE method achieves the best results for all the evaluation metrics compared to other methodologies. Regarding the confusion matrices of the best alternative conceived and the standard categorical cross-entropy method, the smoothed ordinal classification obtains a more consistent classification compared to the nominal approach. Thus, the proposed methodology significantly improves the point-by-point classification of PointNet, reducing the errors in distinguishing between the middle classes (low vegetation and medium vegetation).
Cite this publication
BibTex
@article{morales-martin2024deep, author = {Alejandro Morales-Martín and Francisco-Javier Mesas-Carrascosa and Pedro Antonio Gutiérrez and Fernando-Juan Pérez-Porras and Víctor Manuel Vargas and César Hervás-Martínez}, title = {Deep ordinal classification in forest areas using light detection and ranging point clouds}, journal = {Sensors}, year = {2024}, volume = {24}, number = {7}, pages = {1--18}, doi = {10.3390/s24072168} }
APA
Morales-Martín, A., Mesas-Carrascosa, F., Gutiérrez, P., Pérez-Porras, F., Vargas, V., Hervás-Martínez, C. (2024). Deep ordinal classification in forest areas using light detection and ranging point clouds. Sensors, 24(7), 1-18.
CV
A. Morales-Martín (CA), F. Mesas-Carrascosa, P.A. Gutiérrez, F. Pérez-Porras, V.M. Vargas, C. Hervás-Martínez, (5/6) "Deep ordinal classification in forest areas using light detection and ranging point clouds", Sensors, Vol. 24(7), pp. 1-18, 2024. (Q2, IF: 3.4)
RIS
TY - JOUR T1 - Deep ordinal classification in forest areas using light detection and ranging point clouds AU - Morales-Martín, Alejandro AU - Mesas-Carrascosa, Francisco-Javier AU - Gutiérrez, Pedro Antonio AU - Pérez-Porras, Fernando-Juan AU - Vargas, Víctor Manuel AU - Hervás-Martínez, César JO - Sensors VL - 24 IS - 7 SP - 1 EP - 18 PY - 2024 DO - 10.3390/s24072168 ER -